Restructuring of colloidal aggregates in shear flow: coupling interparticle contact models with Stokesian dynamics.
نویسندگان
چکیده
A method to couple interparticle contact models with Stokesian dynamics (SD) is introduced to simulate colloidal aggregates under flow conditions. The contact model mimics both the elastic and plastic behavior of the cohesive connections between particles within clusters. Owing to this, clusters can maintain their structures under low stress while restructuring or even breakage may occur under sufficiently high stress conditions. SD is an efficient method to deal with the long-ranged and many-body nature of hydrodynamic interactions for low Reynolds number flows. By using such a coupled model, the restructuring of colloidal aggregates under shear flows with stepwise increasing shear rates was studied. Irreversible compaction occurs due to the increase of hydrodynamic stress on clusters. Results show that the greater part of the fractal clusters are compacted to rod-shaped packed structures, while the others show isotropic compaction.
منابع مشابه
Dependence of fragmentation behavior of colloidal aggregates on their fractal structure.
The fragmentation dynamics of aggregate of non-Brownian particles in shear flow is investigated numerically. The breakup behaviors of aggregates having the same connectivity but the different space-filling properties are examined. The Lagrangian particle simulation in a linear flow field is performed. The effect of surrounding fluid on the motion of multiple particles is estimated by Stokesian ...
متن کاملAssembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow.
Colloidal suspensions self-assemble into equilibrium structures ranging from face- and body-centered cubic crystals to binary ionic crystals, and even kagome lattices. When driven out of equilibrium by hydrodynamic interactions, even more diverse structures can be accessed. However, mechanisms underlying out-of-equilibrium assembly are much less understood, though such processes are clearly rel...
متن کاملStrength Deterioration of Nonfractal Particle Aggregates in Simple Shear Flow.
The restructuring of a nonfractal particle aggregate in simple shear flow was simulated by a Stokesian dynamics approach. We studied the deformation and the resultant strength change of aggregates by the surrounding flow under the condition that the cohesive strength of an aggregate is comparable to the fluid stress. In particular, we focused on how the aggregate deteriorates because of the flu...
متن کاملStokesian Dynamics simulation of Brownian suspensions
The non-equilibrium behaviour of concentrated colloidal dispersions is studied by Stokesian Dynamics, a general molecular-dynamics-like technique for simulating particles suspended in a viscous fluid. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Peclet number, Pe, which measures the relative importance of shear and Brownian ...
متن کاملA Modified Stokesian Dynamics Method for Mineral Suspensions
A 3-dimensional modified Stokesian dynamics-based technique for simulating mineral particle suspensions is presented. Stokesian dynamics is a mesh free particle approach, which resembles the discrete element method. It includes hydrodynamic interactions and other interparticle forces. Expressions for the hydrodynamic interactions were modified based on results from finite element (FE) calculati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 35 12 شماره
صفحات -
تاریخ انتشار 2012